CUSTOMARY/ METRIC CONVERSIONS (APPROXIMATE)

Customary		Metric	Metric		Customary
Inches (in)	X	$25.4=$ millimeters	millimeters (mm)	X	. $04=$ inch
Feet (ft)	x	. $3=$ meter	Meters (m)	x	$3.3=$ feet
Yards (yd)	x	. $9=$ meter	Meters (m)	x	$1.1=$ yards
Miles (ml)	x	$1.6=$ Kilometers	Kilometers (km)	X	. $6=$ mile
Square inches (in_)	x	$6.5=$ sq centimeters	Sq centimeters (cm_)	X	. $2=$ sq. inch
Square feet (ft_) $=$ sq. feet		. $1=$ sq meter	Square meters (m_)		$\begin{array}{ll}\mathrm{x} & 10.8\end{array}$
Square yards (yd_)	x	. $8=$ sq meter	Square meters (m_)	x	1.2 =sq yards
Acres	x	. $4=$ hectare	Hactares (ha)	x	2.5 =acres
Cubic feet (_)	x	. 03.6 cu meter	Cu meters (m_)	X	35.3 =cu feet
Cord (cd)	X	3.6 = cu meter	Liters (1)	X	1.1 =quarts(ql)
Quarts (lq) (qt)	x	. $9=$ liter	Cu meters (m_)	X	284.2 = gallons
Gallons (gal)	x	. $004=\mathrm{cu}$ meters	Grams (g)	X	. 04 = ounce(avdp)
$\begin{aligned} & \text { Ounces (avdp) } \\ & \text { (oz) } \end{aligned}$	X	$28.4=$ grams	Kilograms	X	$2.2=$ pounds(avdp)
Pounds (avdp) (lb)	X	. $5=$ kilogram	Kilowatts (kW)	X	1.3 = horsepower
Horsepower (hp)	X	. 7 = kilowatt	Degrees Celsius	x	9/5+32 $=$ degrees Fahrenheit
$\begin{aligned} & \text { Degress } \\ & \text { Fahrenheit } \\ & (-32) \end{aligned}$	x	5/9 $=$ degrees Celsius			

Units of Length and Area

Customary		Metric	Metric	Customary
Inch (in)	$=$	$=25.4$ millimeters	Millimeter (mm)	$=.001$ meter $=.039 \mathrm{in}$.
Foot (ft)	$=$	12 in $=.305$ meter	Centimeter (cm)	$=.01$ meter $=.394 \mathrm{in}$.
Yard (yd)	$=$	36 in or $3 \mathrm{ft}=.914$ meter	Decimeter (dm)	.1 meter $=3.937 \mathrm{in}$.
Mile (ml)	=	$5,280 \mathrm{ft}$. $=1.609$	meter (m)	$=3.291 \mathrm{ft}$.
In_(sq in)		$=6.452 \mathrm{~cm}_{-}$	Kilometer (km)	$=1,000 \mathrm{~meters}=.621 \mathrm{mile}$
Ft_ (sq ft)	$=$	$144 \mathrm{sq} \mathrm{ft}=.093 \mathrm{~m}$	Sq millimeter (mm_)	$=.000001 \mathrm{~m}-=.002 \mathrm{sq} \mathrm{in}$.
Yd_(sq yd)	=	$\begin{aligned} & 1,296 \mathrm{sq} \mathrm{ft}=.836 \mathrm{~m}_{-} \\ & \text {Or } 9 \mathrm{sq} \mathrm{ft.} \end{aligned}$	Sq centimeter (cm_{-}) Sq decimeter (dm_)	$\begin{aligned} & =.0001 \mathrm{~m}_{-}=.155 \mathrm{sq} \mathrm{in.} \\ & =\quad 01 \mathrm{~m}_{-}=15.5 \mathrm{sq} \mathrm{in.} \end{aligned}$
Acre	=	$43,560 \mathrm{sq} \mathrm{ft}=..405 \mathrm{ha}$	Sq meter (m_)	$=\quad=10.864 \mathrm{sq} \mathrm{ft}$.
Mile_(sq mi)	=	640 acres $=2.59 \mathrm{~km}_{-}$	Heclare (ha)	$=10,000 \mathrm{~m}_{-}=2.471$ acres
			Sq kilometer (km_)	$=1,00,000 \mathrm{~m}_{-}=.386 \mathrm{sq} \mathrm{ml}$

Units of Weight (or Mass)

Customary		Metric		Metric	Customary
	Avoirdupois'				
Grain	$=$	437.5 grain or 16 drams	$\begin{aligned} & =.065 \text { gram } \\ & =28.350 \text { grams } \end{aligned}$	Gram (g)	$=.035 \mathrm{oz} \mathrm{avdp}$
$\begin{gathered} \text { Ounce (oz } \\ \text { advp) } \end{gathered}$	$=$				or . 032 oz troy
	=			Dekagram (dag)	$10 \mathrm{~g}=.353 \mathrm{oz} \mathrm{avdp}$
Pound (lb	$=$	7,000 grains	$=.454$ kilograms		or .322 oz troy
Advp)		or 16 ounces		Heclogram (hg)	$10 \mathrm{~g}=3.527 \mathrm{oz}$ avdp
Hundredweight (cwt)	$=$	100 pounds	$=45.359 \mathrm{~kg}$		or 3.215 oz troy
Ton, Short (tn)	$=$	2,000 pounds	$=.907$ metric ton		
Ton, long	=	2,240 pounds	$=1.016$ metric tons	Kilogram (kg)	$1,000 \mathrm{~g} .=2.205 \mathrm{lb} \mathrm{avdp}$
		Troy_			or 2.679 lb troy
Ounce (oz troy)_	$=$	480 grains	$=31.104$ grams	Metric ton	$1,000 \mathrm{~kg}=1.102$ short tons
Pound (lb troy)	$=$	5,760 grains	$=.373$ kilograms		or .984 long ton
		Or 12 ounces			
_For weig	dina	mmodities. _For	weighing precious	jewels, etc. _Al	nown as fine ounces.

Units of Capacity

Customary	Metric	Metric		Customary
	Liquid			Dry
Fluid ounce (fl oz)	$=29.573 \mathrm{ml}$	pint (pt)		$=.551 \mathrm{dm}$
Pint (pt)	$16 \mathrm{fl} \mathrm{oz}=.473$ liter	Quart (qt)		2 pints $=1.101 \mathrm{dm}_{-}$
Quart (qt)	$=32 \mathrm{ft} \mathrm{oz} \mathrm{or} 2 \mathrm{pt} .=.946$ liter	Peck (pk)		8 quarts $=8.810 \mathrm{dm}_{-}$
Gallon (gal)	$=8 \mathrm{pt}$ or 4qt. $=3.785$ liters	Bushel (bu)		32 quarts $=35.238 \mathrm{dm}$
	Metric			
	Milliliter (ml) $=.001$ liter	$=.034 \mathrm{fl} \mathrm{oz}$ (liquid)	$=$. 002 pt (dry)
	Liter (1)	$=1.057 \mathrm{qt}$ (liquid)	=	. 908 qt (dry)
	Hectoliter (hl) = 100 liter	$=26.418$ gal (liquid)	=	2.838 qt (dry)

Geometric Formulas

Circle	
area	$=1 / 2$ diameter $\times 1 / 2$ circumference
area of sector	$=$ length of arc $\mathrm{x} 1 / 2$ radius
area of segment which	
is greater than semicircle	$=$ area of sector of equal radius plus area of triangle
area of segment which	
is less than semicircle	$=$ area of sector of equal radius minus area of triangle
circumference	$=$ diameter x 3.1416
	$=$ radius x 6.283185
diameter	$=$ circumference x .3183
radius	$=$ circumference x .0159155
Cylinder or Prism	
surface	$=($ area of both endcs $)+$ (length x circumference $)$
Ellipse	
area	$=$ product of the two diameters x .7854
Parabola	
area	$=2 / 3$ altitude x base
Parallelogram	
area	$=$ altitude x base
Polygon (Regular)	
area	$=$ sum of sides x perpendicular from center to one of sides $\div 2$
Pyramid or Cone	
surface	$=$ circumference of base $\times 1 / 2$ slant height + area of base
contents	$=1 / 3$ altitude x area of base
Rectangle	
area	$=$ length x width
Sphere	
circumference	$=$ cube root of solidity x 3.8978
	= square root of surface $\times 1.772454$
contents	$=$ diameter x .5236
contents of segment	```= (height squared + three times the square of radius of base) x (height x .5236)```
diameter	$=$ square root of surface x .56419
	= cube root of solidity $\times 1.2407$
surface volume	= circumference x diameter
	$=$ surface $\times 1 / 6$ diameter
	= diameter cubed x .5236
	$=$ radius cubed x 4.1888
	$=$ circumference cubed x .016887
Square	
area	$=$ length x width
Trapezlum	
area	= divide trapezium into triangles; add their areas
Trapezoid	
area	$=$ altitude $\times 1 / 2$ sum of parallel sides
Triangle	
area	$=1 / 2$ altitude x base
Wedge	
contents	$=1 / 2$ altitude x area of base

Metric Conversions

Metric to English Area		
mm_{-}	$\times 0.0016$	$=\mathrm{in}_{-}$
cm_{-}	$\times 0.1550$	$=\mathrm{in}_{-}$
m_{-}	$\times 10.765$	$=\mathrm{ft}$
Energy		
N-m	$\times 0.735$	$=\mathrm{ft}-\mathrm{lb}$
J	$\times 0.7375$	$=\mathrm{ft}-\mathrm{lb}$
MJ	$\times 0.2778$	$=\mathrm{kWh}$

Flow rate

$\mathrm{NI} / \min \times 0.035=\mathrm{SCFM}$

Force		
gf	$\times 2.205 \times 10=$	$=\mathrm{lbf}$
kgf	$\times 2.2046$	$=1 \mathrm{bf}$
N	$\times 0.2248$	$=1 \mathrm{bf}$

Length		
um	$\times 0.0394$	$=$ mils
mm	$\times 0.0394$	$=\mathrm{in}$
cm	$\times 0.3937$	$=\mathrm{in}$
m	$\times 3.2810$	$=\mathrm{ft}$

Power

W	$\times 0.7376$	$=\mathrm{ft}-\mathrm{lb} / \mathrm{s}$
kW	$\times 1.341$	$=\mathrm{hp}$

Pressure

kPa	$\times 0.145$	$=\mathrm{psi}$
bar	$\times 14.50$	$=\mathrm{psi}$
kg cm	$\times 14.224$	$=\mathrm{psi}$
atm	$\times 14.7$	$=\mathrm{psi}$

Temperature
${ }^{\circ} \mathrm{F}=\left(1.8 \mathrm{x}^{\circ} \mathrm{C}\right)+32$

Torque

$\begin{array}{lll}\mathrm{N}-\mathrm{m} & \times 0.7375 & =\mathrm{ft}-\mathrm{lb} \\ \mathrm{Kg}-\mathrm{m} & \times 7.2330 & =\mathrm{ft}-\mathrm{lb}\end{array}$

Weight

g	x 0.0353	$=\mathrm{oz}$
kg	$\mathrm{x} \mathrm{2.2046}$	$=\mathrm{lb}$

English to Metric

Area

in_	$\times 645.16$	$=\mathrm{mm}_{-}$
in_	$\times 6.4516$	$=\mathrm{cm}_{-}$
ft	$\times 0.0929$	$=\mathrm{m}_{-}$

Energy

$\mathrm{ft}-\mathrm{lb}$	$\times 1.356$	$=\mathrm{N} . \mathrm{m}$
$\mathrm{ft}-\mathrm{lb}$	$\times 1.356$	$=\mathrm{J}$
1 Wh	$\times 3.6$	$=\mathrm{MJ}$

Flow rate

SCFM x $28.57=\mathrm{NI} / \mathrm{min}$
$\mathrm{C} 1.0=\mathrm{KO} .856$
Force

lbf	$x 453.6=\mathrm{gf}$
lbf	$x 0.4536=\mathrm{kgf}$
lbf	$\mathrm{x} 4.4482=\mathrm{N}$

Length

| mils | $\times 2.54=\mathrm{um}$ |
| :--- | :--- | :--- |
| in | $\times 25.4=\mathrm{mm}$ |
| in | $\times 2.54=\mathrm{cm}$ |
| ft | $\times 0.3048=\mathrm{m}$ |

Power

$\mathrm{ft}-\mathrm{lb} / \mathrm{s} \times 1.356=\mathrm{W}$
$\mathrm{hp} \quad \mathrm{x} 0.7457=\mathrm{kW}$
Pressure
psi $\quad \mathrm{x} 6.897=\mathrm{kPa}$
psi $\quad \mathrm{x} 0.06897=$ bar
psi $0.0703=\mathrm{kg} / \mathrm{cm}_{-}$

Temperature

${ }^{\circ} \mathrm{C}=5 / 9$ (F-32)

Torque

$\mathrm{ft}-\mathrm{lb}$	$\times 1.3559$	$=\mathrm{N}-\mathrm{m}$
$\mathrm{ft}-\mathrm{lb}$	x 0.1383	$=\mathrm{kg}-\mathrm{m}$

Volume

Weight
$\begin{array}{lll}\mathrm{oz} & \times 28.329 & =\mathrm{g} \\ \mathrm{lb} & \times 0.4536 & =\mathrm{kg}\end{array}$

